A Data-Driven Multiobjective Dynamic Robust Modeling and Operation Optimization for Continuous Annealing Production Process
نویسندگان
چکیده
منابع مشابه
Data-driven robust optimization
The last decade witnessed an explosion in the availability of data for operations research applications. Motivated by this growing availability, we propose a novel schema for utilizing data to design uncertainty sets for robust optimization using statistical hypothesis tests. The approach is flexible and widely applicable, and robust optimization problems built from our new sets are computation...
متن کاملIntegrated planning for blood platelet production: a robust optimization approach
Perishability of blood products as well as uncertainty in demand amounts complicate the management of blood supply for blood centers. This paper addresses a mixed-integer linear programming model for blood platelets production planning while integrating the processes of blood collection as well as production/testing, inventory control and distribution. Whole blood-derived production methods for...
متن کاملLikelihood robust optimization for data-driven problems
We consider optimal decision-making problems in an uncertain environment. In particular, we consider the case in which the distribution of the input is unknown, yet there is some historical data drawn from the distribution. In this paper, we propose a new type of distributionally robust optimization model called the likelihood robust optimization (LRO) model for this class of problems. In contr...
متن کاملMultiobjective dynamic optimization of a semi-batch epoxy polymerization process
Multiobjective Pareto optimal solutions for epoxy semi-batch polymerization process are obtained by adapting nondominated sorting genetic algorithm II (NSGA II). The objective is to produce polymer of maximum possible number average molecular weight (Mn) with a specified value of polydispersity index (PDI) and number average molecular weight in minimum possible time. The M and reaction time a p...
متن کاملInteractive evolutionary multiobjective optimization driven by robust ordinal regression
This paper presents the Necessary-preference-enhanced Evolutionary Multiobjective Optimizer (NEMO), which combines an evolutionary multiobjective optimization with robust ordinal regression within an interactive procedure. In the course of NEMO, the decision maker is asked to express preferences by simply comparing some pairs of solutions in the current population. The whole set of additive val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISIJ International
سال: 2020
ISSN: 0915-1559,1347-5460
DOI: 10.2355/isijinternational.isijint-2019-570